153 research outputs found

    The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results

    Full text link
    The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture telescope that provided a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in June 2013. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg~{\sc ii}~k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR~11768 observed relatively close to disk centre is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500~G and, while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.Comment: Accepted for publication in The Astrophysical Journa

    Treatment patterns and clinical outcomes

    Get PDF
    BACKGROUND: Treatment resistant depression (TRD) characterizes a subgroup of 10-30% of patients with major depressive disorder, and is associated with considerable morbidity and mortality. A consensus treatment for TRD does not exist, which often leads to wide variations in treatment strategies. Real-world studies on treatment patterns and outcomes in TRD patients in Europe are lacking and could help elucidate current treatment strategies and their efficacy. METHODS: This non-interventional cohort study of patients with TRD (defined as treatment failure on ≥2 oral antidepressants given at adequate dose and duration) with moderate to severe depression collected real-world data on treatment patterns and outcomes in several European countries. Patients were started on a new treatment for depression according to routine clinical practice. RESULTS: Among 411 patients enrolled, after 6 months, only 16.7% achieved remission and 73.5% showed no response. At Month 12, while 19.2% achieved remission and 69.2% showed no response, 33.3% of those in remission at Month 6 were no longer in remission. Pharmacological treatments employed were heterogenous; 54 different drugs were recorded at baseline, and the top 5 treatment types according to drug classes accounted for 40.0% of patients. Even though remission rates were very low, at Month 12, 60.0% of patients had not changed treatment since enrolment. CONCLUSIONS: The heterogeneity of treatments highlights a lack of consensus. Moreover, despite low response rates, patients often remained on treatments for substantial periods of time. These data further support existence of an unmet treatment need for TRD patients in Europe.publishersversionpublishe

    Healthcare resource utilization

    Get PDF
    Background: Treatment resistant depression (TRD) is diagnosed when patients experiencing a major depressive episode fail to respond to ≥2 treatments. Along with substantial indirect costs, patients with TRD have higher healthcare resource utilization (HCRU) than other patients with depression. However, research on the economic impact of this HCRU, and differences according to response to treatment, is lacking. Methods: This multicenter, observational study documented HCRU among patients with TRD in European clinical practice initiating new antidepressant treatments. Data regarding access to outpatient consultations and other healthcare resources for the first 6 months, collected using a questionnaire, were analyzed qualitatively according to response and remission status. The economic impact of HCRU, estimated using European costing data, was analyzed quantitatively. Results: Among 411 patients, average HCRU was higher in non-responders, attending five times more general practitioner (GP) consultations and spending longer in hospital (1.7 versus 1.1 days) than responders. Greater differences were observed according to remission status, with non-remitters attending seven times more GP consultations and spending approximately three times longer in hospital (1.7 versus 0.6 days) than remitters. Consequently, the estimated economic impacts of non-responders and non-remitters were significantly greater than those of responders and remitters, respectively. Limitations: Key limitations are small cohort size, absence of control groups and generalizability to different healthcare systems. Conclusion: Patients with TRD, particularly those not achieving remission, have considerable HCRU, with associated economic impact. The costs of unmet TRD treatment needs are thus substantial, and treatment success is fundamental to reduce individual needs and societal costs.publishersversionpublishe

    XMM-Newton observations of the eclipsing polar EP Dra

    Full text link
    We present XMM-Newton observations of the eclipsing polar EP Dra which cover nearly 3 binary orbital cycles. The X-ray and UV data show evidence for a prominent dip before the eclipse which is due to the accretion stream obscuring the accretion region. The dip ingress is rapid in hard X-rays suggesting there is a highly collimated core of absorption. We find that a different level of absorption column density is required to match the observed count rates in different energy bands. We propose that this is due to the fact that different absorption components should be used to model the reprocessed X-rays, the shocked X-ray component and the UV emission and explore the affect that this has on the resulting fits to the spectrum. Further, there is evidence that absorption starts to obscure the softer X-rays shortly after the onset of the bright phase. This suggests that material is threaded by an unusually wide range of magnetic field lines, consistent with the suggestion of Bridge et al. We find that the period is slightly greater than that determined by Schwope & Mengel.Comment: Accepted for publication MNRAS, 6 page

    The Sunrise Mission

    Get PDF
    The first science flight of the balloon-borne \Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is briefly summarized.Comment: 35 pages, 17 figure

    Extreme-ultraviolet fine structure and variability associated with coronal rain revealed by Solar Orbiter/EUI HRIEUV and SPICE

    Get PDF
    CONTEXT: Coronal rain is the most dramatic cooling phenomenon of the solar corona. Recent observations in the visible and UV spectrum have shown that coronal rain is a pervasive phenomenon in active regions. Its strong link with coronal heating through the thermal non-equilibrium (TNE) a-thermal instability (TI) scenario makes it an essential diagnostic tool for the heating properties. Another puzzling feature of the solar corona in addition to the heating is its filamentary structure and variability, particularly in the extreme UV (EUV). AIMS: We aim to identify observable features of the TNE-TI scenario underlying coronal rain at small and large spatial scales to understand the role it plays in the solar corona. METHODS: We used EUV datasets at an unprecedented spatial resolution of 240 km from the High Resolution Imager (HRI) in the EUV (HRIEUV) of the Extreme Ultraviolet Imager (EUI) and SPICE on board Solar Orbiter from the perihelion in March and April 2022. RESULTS: EUV absorption features produced by coronal rain are detected at scales as small as 260 km. As the rain falls, heating and compression is produced immediately downstream, leading to a small EUV brightening that accompanies the fall and produces a fireball phenomenon in the solar corona. Just prior to impact, a flash-like EUV brightening downstream of the rain, lasting a few minutes, is observed for the fastest events. For the first time, we detect the atmospheric response to the impact of the rain on the chromosphere, and it consists of upward-propagating rebound shocks and flows that partly reheat the loop. The observed widths of the rain clumps are 500a-±a-200 km. They exhibit a broad velocity distribution of 10a-a-A-150 km sa-1and peak below 50 km sa-1. Coronal strands of similar widths are observed along the same loops. They are co-spatial with cool filamentary structure seen with SPICE, which we interpret as the condensation corona transition region. Prior to the appearance of the rain, sequential loop brightenings are detected in gradually cooler lines from coronal to chromospheric temperatures. This matches the expected cooling. Despite the large rain showers, most cannot be detected in AIA 171 in quadrature, indicating that line-of-sight effects play a major role in the visibility of coronal rain. The AIA 304 and SPICE observations still reveal that only a small fraction of the rain can be captured by HRIEUV. CONCLUSIONS: Coronal rain generates EUV structure and variability over a wide range of scales, from coronal loops to the smallest resolvable scales. This establishes the major role that TNE-TI plays in the observed EUV morphology and variability of the corona

    First perihelion of EUI on the Solar Orbiter mission

    Get PDF
    CONTEXT: The Extreme Ultraviolet Imager (EUI) on board Solar Orbiter consists of three telescopes: the two High Resolution Imagers, in EUV (HRIEUV) and in Lyman-α (HRILya), and the Full Sun Imager (FSI). Solar Orbiter/EUI started its Nominal Mission Phase on 2021 November 27. AIMS: Our aim is to present the EUI images from the largest scales in the extended corona off-limb down to the smallest features at the base of the corona and chromosphere. EUI is therefore a key instrument for the connection science that is at the heart of the Solar Orbiter mission science goals. METHODS: The highest resolution on the Sun is achieved when Solar Orbiter passes through the perihelion part of its orbit. On 2022 March 26, Solar Orbiter reached, for the first time, a distance to the Sun close to 0.3 au. No other coronal EUV imager has been this close to the Sun. RESULTS: We review the EUI data sets obtained during the period 2022 March–April, when Solar Orbiter quickly moved from alignment with the Earth (2022 March 6), to perihelion (2022 March 26), to quadrature with the Earth (2022 March 29). We highlight the first observational results in these unique data sets and we report on the in-flight instrument performance. CONCLUSIONS: EUI has obtained the highest resolution images ever of the solar corona in the quiet Sun and polar coronal holes. Several active regions were imaged at unprecedented cadences and sequence durations. We identify in this paper a broad range of features that require deeper studies. Both FSI and HRIEUV operated at design specifications, but HRILya suffered from performance issues near perihelion. We conclude by emphasizing the EUI open data policy and encouraging further detailed analysis of the events highlighted in this paper

    EUV fine structure and variability associated with coronal rain revealed by Solar Orbiter/EUI HRIEUV and SPICE

    Full text link
    Coronal rain is the most dramatic cooling phenomenon of the solar corona and an essential diagnostic tool for the coronal heating properties. A puzzling feature of the solar corona, besides the heating, is its EUV filamentary structure and variability. We aim to identify observable features of the TNE-TI scenario underlying coronal rain at small and large spatial scales, to understand the role it plays in the solar corona. We use EUV datasets at unprecedented spatial resolution of ~240 km from EUI/HRIEUV and SPICE of Solar Orbiter from the spring 2022 perihelion. EUV absorption features produced by coronal rain are detected at scales as small as 260 km. As the rain falls, heating and compression is produced immediately downstream, leading to a small EUV brightening accompanying the fall and producing a "fireball" phenomenon. Just prior to impact, a flash-like EUV brightening downstream of the rain, lasting a few minutes is observed for the fastest events. For the first time, we detect the atmospheric response to the rain's impact on the chromosphere and consists of upward propagating rebound shocks and flows partly reheating the loop. The observed widths of the rain clumps are 500 +- 200 km. They exhibit a broad velocity distribution of 10 - 150 km s^-1, peaking below 50 km s^-1. Coronal strands of similar widths are observed along the same loops co-spatial with cool filamentary structure, which we interpret as the CCTR. Matching with the expected cooling, prior to the rain appearance sequential loop brightenings are detected in gradually cooler lines from corona to chromospheric temperatures. Despite the large rain showers, most cannot be detected in AIA 171 in quadrature, indicating that LOS effects play a major role in coronal rain visibility. Still, AIA 304 and SPICE observations reveal that only a small fraction of the rain can be captured by HRIEUV.Comment: Astronomy & Astrophysics; 32 Pages, 24 Main Figures, Appendi
    corecore